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THE LAW OF THE ITERATED LOGARITHM
AND CENTRAL LIMIT THEOREM FOR
L-STATISTICS

DeLt Li!, M. BHAskaRA Rao? aND R. J. Tomkins® ¢

Abstract The main ideca in this paper is that we devise an effective way of
combining the Smirnov’s law of the iterated logarithm for empirical processes,
and some well-known results of limit behavior of L-statistics to establish new
results on the central limit theorem, law of the iterated logarithm, and strong
law of large numbers, for L-statistics. We show further that this approach can
be pursued profitably to obtain necessary and sufficient conditions for either
almost sure convergence or convergence in distribution of some well-known L-
statistics and U-statistics. A law of the logarithm for weighted sums of order
statistics is stated with no proof.
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1 Introduction

Throughout this article, { X, X»; n > 1} will denote a sequence of independent
identically distributed real random variables (i.i.d. random variables) with com-
mon distribution function F given by F(x) = P(X < z), € R, the real line.
For each positive integer n, let X., < Xo.n < -+ € Xp.n be the order statistics
of Xy, X3, ---, X,. Let H be a real valued measurable function defined on
R. Lincar combinations of order statistics (in short, L-statistics) are statistics

of the form

1™
Ly=~ o0 (Xin
nzc’ ( )

i=1

where the weights ¢;, 1 <% <n, n > 1, are real numbers.

Research in L-statistics has been active for more than 20 years. Much
is known about their limit behaviours including asymptotic normality, Berry-
Esseen type bounds for normal approximation, Cramer type large deviations,
the law of the iterated logarithm and the Kolmogorov type strong laws of large
numbers under quite gencral conditions. See Helmers (1977), Mason (1982),
Mason and Shorack (1992), Sen (1978), Shorack (1972), Stigler (1974), Van
Zwet (1980), Wellner (1977a, b), etc and, in particular, two books by Serfling
(1980) and Shorack and Wellner (1986) and references therein. To our knowl-
edge, however, all results established for L-statistics need H(-) to be a known

function of the form H(-) = Hi(-) — Ha(-) with each H; | and left continuous.




Furthermore, H1(-) and H1(-) should also satisfy
|Hi{(F~ (@) S Mit™ (1 =1t)"%, o<t<l1 (1.1)
with some fixed M, d) and d3, where
F=(t)=inf{s; F(s) 2t}, O<t<l.

Some conditions on {c;»; 1 <7 < n, n> 1} are also needed. One often chooses

qsz%% 1<i<n, n>1

where ./(t) satisfies some continuous condition in (0, 1) as well as
()] < Mat™® (1 —t)"%, 0<t<]1 (1.2)

with some fixed My, b, and bs. For obtaining either central limit thcorem or

the law of the iterated logarithm for

S (%) H(Xin), n21,
=1

further condition on by, by, d; and dy is
1
a=max{b +dy,by +dy} < 3

These conditions sometimes are not easy to be vertified.
Example 1.1 Let p> 1 and {X, X,; n > 1} a sequence of i.i.d. random

variables with common density function

[racCplz|*(L]z])?, lz] > ¢
@) = ’

0, lz| < e




where Cp, > 0 is a constant such that ffooo f(z)dr = 1. Here and the following

Lz = log, max{e,z} and Loz = L(Lz), = € R. Clearly,

E(X)=0 and E(X?) = 1_72%'
It is easy to check that
271Cpz"%(Llz|)"P as T — —00,
F(z)= P(X <z)~ .
1-2"1Cpz%(Ljz|)~? as T — oo.
Hence
5 \1/2 ~
(&) ey st -0,

F= ) ~ 1/2 -p
() 6 () o

Choose H(z) = x and J(t) = 1. It follows that one can not find b;, b2, d; and

d2 such that (1.1) and (1.2) hold and
1
a=max{b +dy, by +dy} < 5

Thus, by using any result of the law of the iterated logarithm for L-statistics

established so far, one can not say anything about

iz I X e
lim sup _Z’=—l(_"‘)J _ limsup Zn:l “n
nooo V2nloglogn n—oo 2 loglogn

which the classical Hartman-Wintner law of the iterated logarithm asserts that
the limit superior equals to (2C,/(p — 1))2 almost surely. As Wellner (1977b)
mentioned, the classical law of the iterated logarithm docs follow only if the
second moment condition is strengthened to 7-th moment condition for some

r > 2. Sec Example 1a on page 492 in Wellner (1977b).




Example 1.2 Let W be a standard Wiener process on R (i.e. {W(t); t >
0} and {W(=t); t > O} are two independent copies of Wiener process starting
from 0), and let {X,X,; n > 1} be a sequence of i.i.d. random variables,

independent of W. For any given path of W, we consider L-statistics
n 2-

2 - W(Xin), n21

i=1

As we know, for almost every path of W, W can not be represented as the form

W =W, — W, with W; 1 and left continuous. One also can not say anything

about
’.' lW X'-n —A
limsup z'=l n ( in) n
n—00 \/277. lOg logn

for some sequence {A,; n > 1}, by using any result of the law of the iterated
logarithmn for L-statistics established so far.

Motivated by these examples above, one of the main objectives of this paper
is to find necessary and sufficient conditions for the law of the iterated logarithm
and the central limit theorem, respectively, of L-statistics under some very re-
laxed conditions on /{(-). In fact, from Theorems 2.1 and 2.2 in this paper, we
can find that the only condition on H(-) we need is E(]H(X}]) < co. We should
note that J(-) is strengthened to be a Lipschitz function of order 1 when H(-)
is relaxed.

It is valuable to give an outline of the main idea of proofs of Theorems 2.1

and 2.2. Throughout this paper, {U,U,; n > 1} represents a sequence of iid




random variables with uniform (0, 1) distribution. Then, we have
(X, Xp; n> 1} £ {F-(U), F~(U,); n>1}

where “%” means equal in distribution. This is a well-known fact. It now follows
that

{Xim; 1Si<n, n 21} £ {F~(Uin); 1<i<n, n>1}

where (/;,,,, 1 <1< n, are the order statistics of U;, 1 <1 < n. Note that
P(U, #U] forall 1<<j<o0)=1.

So we have that

e

Y JHH(F~(Uim)) = iy J(Uin)H (F~ (Uin))

-

+ E?—l (J(;‘;) - J(Uln)) H(F‘— (Uim))

i JUNH (F~(U3))

o
[

+ Yini (J(Dn(Uin)) = J(Uin)) H (F7 (Vi)

1o

Sn+Rn, n21

where D,, is the empirical distribution function of U;, U, ..., U,. Clearly,
classical results can be applied to the first part S, above. As for the second
part R, we may try to apply some known results for the empirical processes to
R, to obtain what we want. However, we can not misunderstand that, under
some conditions (except J(t) = C some constant), both the law of the itcrated

logarithm and the central limit theorem for Y .. J(%)H(Xi:n), n > 1, only

1=1




depend on Y, J(U;)H(F*~(U;)), n > 1. We shall know this from Theorems
2.1 and 2.2.

This approach is quite simple. The empirical process is a powerful tool
which has now become a standard technique in proving limit theorems. Sce, for
example, Gilat and Hill (1992) Mason and Shorack (1992), Shorack and Wellner
(1986) and references therein. In Section 3, we show further that this approach
can be applied to obtain necessary and sufficient conditions for either almmost
sure convergence or convergence in distribution of some well-known L-statistics
or U-statistics. This is the second main objective of this paper.

It is very natural to consider the case of general scores ¢in, 1 <i<n, n > 1
with

sup  |cin| < oo.
1I<i<n,n>1

In this connection, one may ask what we can say about the law of the iterated

logarithm for

> cinH(Xim), n21.

=1

We shall have some certain sense about this problem by a result on what we

call a law of the logarithm for L-statistics. See Section 4.

2 Main Results

In this section, we give our main results of this paper as well as their proofs.

Let X be a real random variable with distribution function f(z) and U




a random variable with uniform (0, 1) distribution. Let H(:) be a real Borel-

measurable function defined on R with
E(|H(X)]) < oo. (2.1)
Then we write
pw=pw(F,J H)y=E(JU)H(F~(U))

exists for all J(-) € C[0, 1], the set of continuous functions defined on [0, 1]. For

every given Lipschitz function J(-) of order 1 defined on [0, 1], write

Z = JU)H (F-(U)), (2.2)

Y =-Z+p— [y (Lvcey =) J'(O)H (F(¢)) dt.

Then Y and Z are two random variables under (2.1). It is easy to see that

E(]Y]|) <oo and E(Y)=0 (2.3)
and that
0% = Var(Y) = E(Y?) < o0 (2.4)
if and only if
E(Z?) < oo. (2.5)

Let {&.; n > 1} be a sequence of random variables. We say that {£,; n > 1} is

bounded in probability if

lim sup P(|&,| > z) =0.

T >t

The main results in this paper are following Theorems 2.1 and 2.2.




Theorem 2.1 (Necessary and Sufficient Conditions for the LIL of L-Statistics) Let
{X,X,; n > 1} be a sequence of i.i.d. random variables and H(-) a real Borel-
measurable function defined on R such that (2.1) holds. Let J(-) be a Lipschitz

function of order 1 defined on [0,1]. Then

T JEYH (X)) -
lim sup 122i=1 \/(i:;)loélo;n) " oo as. (2.6)

if and only if (2.5) holds. In either case,

Z:‘:l J(%)[‘I(Xi:n) —nH =(:) o as. (2’7)

limsup(lim inf)
-

nooo | M0 V2nloglogn
where o2 is defined by (2.4).
Theorem 2.2 (Neccessary and Sufficient Conditions for the CLT of L-
Statistics)

Under the conditions of Theorem 2.1, we have that

{ ZI;l J(;‘I)[{(th) - nll-’

7 ;o m> l} is bounded in probability (2.8)
f

if and only if (2.5) holds. In either case,

Z:;l J(%)l[(xtn) —n
NG

E 4, N(0,0?) (2.9)

w d . . . .
where “—" means convergence in distribution.

Two remarks arce in order.
(i) Theorems 2.1 and 2.2, respectively, include the classical LIL and the
classical CLT, respectively, as special cases. (Take J(¢) = 1,¢ € [0,1] and

H(x)=xz, z€R.)

10




(ii) From the proofs of Theorems 2.1 and 2.2, one can replace J(£), 1 <

i<n, n>21byJ(tin), 1 <i<n, n>1witht;, €[0,1], 1 <i<nand

=o(—\—};)asn—+oo.

maxi<i<n |tin — ;I

Proof of Theorem 2.1 Note that (1..1), (1.2) and (1.3) hold and that
the classical LIL asserts that

n—oo V<2nloglogn
, |3 VW) H(F~ (U) — 1) | ‘
=1 i= (2.10)
11? l-.solip v2nloglogn

<00 as.

if and only if (2.4) holds. So the first part of the theorem follows provided we

show that, under the conditions of the theorem,

|Ra|

li1ﬂs;])m <27'B(NE(H(X)|) as. (2.11)
where
B(J)= sup i(s—)_—ﬂl < oo.
0<s<t< s~—t
Clearly,

e max 1J(Dn(Usn)) — J (Usn)| - =L W)l

—_— <
V2nloglogn = 1<i<n V2nloglogn

S B(J) (lr;]‘,a—%xnlpn((ji:n) - Ui:'nl) : Zz——\-/l%,i_{lég‘;oé_(i'))l
1/2 n
< B (———-—2 bg’jogn) sup [Da(0) = (%) S IH(F W)l

By Smirnov’s (1944) law of the iterated logarithm,

n t/2 1
limsup (————) sup |Dn(t) —t| = 5 as.

n—oo \2ntloglogn 0<t<1

11




and by Kolmogorov’s strong law of large numbers,

DY IHE U] = BQHE= ) = B(HX)) as.

Jim (-

Consequently, (2.11) and hence the first part of the theorem follows.
We now prove that conditions (2.1) and (2.5) imply that (2.7) holds. Con-

sider the following two Banach spaces

B, = {005 18l = [ (- @)l < oo}

and

1 1/2
B, = {h(‘); IQIPES (/0 Jz(t)hz(p'—(t))dt) } :

Let M denote the class of all real valued functions i(-) defined on R satisfying
h'(z) is continuous on R

and

h'(z) =0 when |z| is large enough.

It is casy to show that § is a dense subset of both B and B,. It follows that,

for any given ¢ > (), since (2.1) and (2.5) hold, there exists H.(-) € M such that
B(H(X) - H(X)) < Var(Y —Y.) <e

and

Var(Z - Z,)<c¢

wherce

Z. = JUYH(F~(U))  pe = E(Z.)

12




Vo= ~Zetpe~ [ sy~ 0T OHF~ )t
Write
He()=H()-He() and fe=p-—p
Noting (1.3), (2.10) and (2.11), we have that

|0, J() He(Xim) = it

limsup

n—o00 v2nloglogn
< VarZ = Z) + 27 B)E(I.(X)) 212)
<e2+1iB(J)e  as.
Let
H (z) = /_; H(z) j1(2)>0) 42,
H; (z) = —/; H ()] 11(z) <0} de-
Then

He(z) = H} (z) - H (a).

One now can casily check that J(-) and H,(-) satisfy all conditions for Thcorem
4 of Wellner (1977b) (Sce also Theorem 19.2 on page 665 of Shorack and Wellner

(1986)). We thus have

nooJ(L H. (Xim) ~ .
limsup(liminf)z‘=1 (z)He(Xin) = np

-+
=(— S. 2.13
n—oo MO0 V2nloglogn (=)o as ( )

where

0% = Var </0l(1{,,5q — t)J(t)dH .(F~ (a))) .

13




Since J(-) is a Lipschitz function of order 1 defined on [0, 1], we have that

(Irugey — O J()dH(F(t))

R

1
S JU)HL(F™ (U)) + e /0 (Twsey — O (O He(F~ () dt
=Y.
Thus

02 —o?=Var(Y) as e|0.

Letting € | 0 and combining (2.12) with (2.13), (2.7) follows, and the proof of

the theorem is complete. O

Proof of Theorem 2.2 A proof of Theorem 2.2 can be culled from the

proof of Theorem 2.1 with obvious modifications. In fact, instead of using
Smirnov’s (1944) LIL for empirical processes, we use the following celebrated

result which is due to Kolmogrov (1933). That is, for all A > 0,

o0
lim P(\/ﬁ sup |D,,(z)-|2,\> 2 exp(—2k%A%).

n—00 0<t<t prd

Thus, Kolmogrov’s SLLN implics that (2.8) holds if and only if

m O J(UYH () -
{ Lizi Il )”5_ (:)) ne. >1} is bounded in probability
n

which is equivalent to (2.5). Thus, the first part of Theorem 2.2 follows.

As for the second part of Theorem 2.2, note that, for any § > 0.

NG

-0 =00

lim sup limsup £ (’Z (;l; JIH(Xin) = 1 (Xicn)) = mlpe = )| > 6> =0
(2.14)

14




and by Theorem 19.1 on page 664 of Shorack and Wellner (1985),

S J(E)VH (X)) — np,
/n

Combining (2.14) with (2.15), (2.9) follows. O

4, N(0,02). (2.15)

3 Applications and Examples

In this section, weshow further how either our approach addressed in Section
1 or Theorems 2.1 and 2.2 can be applied to obtain necessary and sufficient
conditions for either almost sure convergence or convergence in distribution of
some L-statistics or even U-statistics.

As an application of our approach, we state the following interesting result.
Its proof is left to the readers.

Theorem 3.1 Let {X,X,; n > 1} be a sequence of i.i.d. random variables
and H(-) a real Borel-measurable function defined on R. Let J(-) be a Lipschitz
function of order 1 defined on [0,1]. Then, we have

(i) If there exists a real sequence {bn; n > 1} such that

bnvoo aS M — 00 (3.1)
and
" H(X;
lim Z:—’—=—'—'—bu =0 as. (3.2)
n— oo nyv by,

15




then, for any real sequence {A,; n > 1},

e JEVH(Xin) = An
\/2n(log log n)b, (33)
Do JWUDH(F~(U)=An
\/271(]05 log n)bn

lim sup,, _, oo (lim inf—, o0)

= limsup,, _, o (liminfp, 00)

(ii) If there exist sequence {by; n > 1} and {A,; n > 1} such that (3.2)

holds and

SL JUIH(F=(U) = An d

G(x) (3.4)
nb,,
where (/(r) is a distribution function, then
T J(EYH(Xim) = An
Zn:l (n) ( v ) —ELG(.’II) (35)

by,

As a corolaary of Theorem 3.1, we have

Corollary 3.2 Let #/(-) and J(-) be the same as in Theorem 3.1. Let
Z = JWU)H(F~(U)).
If
E(IH(X)|]) <oo, E(Z*) =00

and Z is in the domain of attraction of the normal distribution, then, there exist

sequence {A,; n > 1} and {By, > 0; n > 1} such that

Iy J i H )(i'n _An.
Zi:l (11)8( : ) —(!"N(Oyl) (36)

where /3, may be chosen as
-2 2 l
By =supqc: ¢ *E(Z°I{z1<q) 2 -

16




and A, may be taken as
n
A, = E—E(ZI{IZI < Bn})

Proof Since Z is the domain of attraction of the normal distribution, we

have that

Ei:IBZI' — A'n. i’ N(O, 1)
for some {A,; n > 1} and {By; n > 1} and they may be chosen as above, where

{Z.; n > 1} is a sequence of i.i.d. random variables with common distribution

function as Z’s. Note that £(Z?) = oco. So

B, = /n(B?%/n) = \/nb,, n>1

with b, = b%/n — 00 as n — o0o. Now, it follows that E(|H(X)|) < oo

implies that (3.2) holds. By Theorem 3.1, (3.6) follows. O

Remark It is intercsting to note that, when E(|H(X)|) < oo, E(Z?) = o0
and Z is in the domain of attraction of the normal distribution, A, and B, are

determined by Z, not Y.

* Let {X,Xn; n > 1} be a sequence of i.i.d. random variables. Gini’s mecan

difference,

2
n(n—1) Z X = Xl

1<i<j<n

considered as a U-statistic for unbiased estimation of the dispersion parameter
0= E(| X, — X2)),

17




is introduced in both Serfling (1980, page 263) and Shorack and Wellner (1986,

page 676). It may be represented as an L-statistic as follows

2 1, i—1
n(n—1) Z |Xi = X;] = oy ;(4 no1 2) Xiin- (3.7)

1<i<3<n
Using Theorems 2.1 and 2.2 and our approach, we can establish the following
result.

Theorem 3.3 (i) (Kolmogorov's SLLN for Gini’s mean difference)

. 2
ll:}\jgp — lsgﬁﬂ |X; — Xj| <o as. (3.8)
if and only il
B(IX]) < oo. (3.9)
In either case,
lim n(Tz——l) Z IXi — Xj| =0=E(X, - X2|) as. (3.10)
1<i<j<n

(if) (LIL for Gini's mean difference) For some 0,

1 2
limsup , /; i— X -0 as. 3.11
e\ 2 loglogn [n{n — 1) 1<§<n X = X oo as (11)

if and only if

E(X?) < 0. (3.12)

In either case. 0 = (| X, — X,]) and

_ A n 2 . + )
h,l,'?;l)(hyflllnlé” 2loglogn \ n(n —1) 1<.<Z< (Xi= Xyl =0 == as
Si1<isn

18




where

0? = Var(Y) -
N /:, [/.:ly—wldF(r)rdF(y)—e’-’ N

and
1
Y = —(2U = 1)F~(U) + 6 — 2/ (e — )F~ (t)dt.
0
(iif) (CLT for Gini’s mean difference) For some 0,

v 2 Z |Xi— Xj]—0]; n>1) isbounded in probability
n(n—1) 1<i<j<n
(3.15)

if and only if (3.12) holds. In either case, 0 = E(|X; — X2|)

1<i<j<n

4 \/’ﬁ (;an_—-ﬁ Z |X.'—XJ'|—9) i»N(O,cﬁ) (3.16)

where 02 is defined as in (3.14).

Remark Shorack and Wellner (1986, page 677) obtained (3.16) under the

assumption that E(]X]?**) < oo for some § > 0.

Proof of Theorem 3.3 Take J(t) =4t—2, 0<t<1land H(z) =z, T €

‘R. Then (3.9) implies that

Yoy JU)F(U7) !

i=1

hm
1L— 00 n

(4t — 2)F— (t)dt

0

= /l /IIF'_(t)—-F'_(s)Idsdt
o Jo

= 0 as.

and

n
lim —ZEI-E-EI- = a.s. (3.17)

n—oo  n\/b,

19




where b, = \/n/loglogn — oo as n — oco. By Theorem 3.1, we have that

llm Z?:l J(i)X‘"

7n—00 n

=0 as. (3.18)

Note that (3.9) also implies that

T (V6D - IG)) X

4 < .
S—EEZP{;]—»O as. asn— oo. (3.19)

‘:l
So (3.7), (3.18) and (3.19) together imply that (3.10) holds.
We now prove that (3.8) implies (3.9). Obviously, (3.8) implies that

. n

2
lim sup m ;|X2i-1 — Xai| <00 as.

Nn—0o0 Z‘IL

Since {| Xzn-1 — Xan|; 1 2 1} is a sequence of i.i.d. random variables, it follows
that £(]X, — X3|'/2) < oo which is equivalent to
E(1X:1]Y?) < oo. (3.20)
Thus (3.19) holds. Combining (3.8) with (3.19), we have that
| Eie1 JG) Xl (3.21)

limsup <o as.
n—00 n

Note that (3.20) is equivalent to

lim Z?:l |X'|

n—soo g n2

=0 a.s.

By Theorem 3.1 and noting (3.20),

b JU) E (U P () X
linlmlplz‘=' ({)r (‘)I lilnsuplz‘=' ()X ’
neeo/2n(loglog n)n? n—oo /2n(loglogn)n?

= 0 as.
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which implies that, for all ¢ > 0,
z ! 2
E (lJ(U)F“ (U)|3‘E) = / (4t — 2)F— (£)|3 -t < oo. (3.22)
0
Since |J(0)J(1)] =4 > 0, it is easy to check that (3.22) is equivalent to

BIF- @3 cdt = [Z |z|}-<dF(z)

-00

E(1x]3-¢) < 0.

In particular, we have that
E(1X]"13(L2| X)) < 00

which is equivalent to

b
tim — 2= X
n~0o n,/n10/7/loglogn

Using Theorem 3.1 and noting (3.21) again, we have that

a.s.

n=o0 \ /2n(log logn)n'%7/loglogn n—oo V2nii/7
= 0 as.

which is equivalent to
E(JJO)F(U)'"*'T) < 00
and hence
E() X"} < oo. (3.23)
Since 2‘ pB —:j—‘;, (3.23) implics that

lim Z:l:-l |X" —

=0
n=oo q,/n/loglogn
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Using Theorem 3.1 and noting (3.21) again, we have that

lim | $iay SO (U] lim | JW)F ()]
n—oo  /2n(loglogn)n/ loglogn n—00 V2n

< OO0 as.

which is equivalent to

E(IU)F~(U)]) <00

and hence (3.9) follows. The proof of (i) therefore complete.
Using the same technique as it has just been used above, one can show that
cither case of (3.11) and (3.15) implies that (3.12) holds and 8 = E(| X, — X3|).

Now applying Theorems 2.1 and 2.2, (ii) and (iii) follow. O

Another important application of our approach and results is on the expec-
tation of order statistics. Let 6, = E(X.x) where X,z is the minimum value
(smallest order statistic) in a sample of size k. Then an estimate of ), based on

a sample of size n is

ny —1
Th = (k) E min{X;,,---, X, }
(n.k)
where the sum 37, ) is taken over all subsets 1 < 7 < --- < i < n of

{1,2,...,n}. Obviously, T, is also a U-statistic.

As it is deduced in Lee (1990, pageé 65), T, can also be represented as an

22




L-statistic as follows

ny —1 n—i
(8) izt (k— 1) K
1 n= n—1 n_z_l.n—-l—k""len
n i=1
(ki(k—l)!

— 1 n

) W (i (= X + CL L (= 2 X 4+ + Cha Ty (7 = 9) Xim)
k) (k=1)!

T

il

where Cy, Cs,...,Ci_2 are constants depending on k only. Note that

k

n n
and, forz =1,2,...,n,
. . ivhk-1 .
oo EO-D e
WD (k= 1)

So we take J(t) = (1—t)*~', 0<t <1and H(z) =z, £ € R. Using Theorems
3.1, 2.1 and 2.2, we have the following results.

Theorem 3.4 Let {X, Xy; n > 1} be a sequence of i.i.d. random variables.
Then, we have

(1) If there exists p > % such that
E(|X|P) < 00 (3.24)
then the following three statements are equivalent

(| min{Xy, X2, ..., Xk }]) < o0 (3.25)

n

k 1
- Syk=tx,
3 g( u) X

limsup = < oo as. (3.26)

n— 00
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limsup |T,| < oo as. (3.27)

n =00
In every case, we have that
i\ k1
lim 75, = lim — 1-— —-) Xin=0r as. (3.28)

n
n—oo n—oo 7N £ 7 ( n
i=

(1) If E(]X]) < oo, then the following five statements are equivalent:

o0
E((1-U)*2(F~(U))?) = / (1 - F(z))* 222dF(z) <oo  (3.29)
)
n 1/2
ims —_— - .S. 3.30
111131.5:)]) (210g logn) |Tn — 0] <00 as (3.30)
n i k-1 0k
imsup ———— - — im — — 8. 3.31
]T::p sqrt2n loglogn ; (1 n) Xin K| < 2 (3:31)
{nl/'z(Tn —O); n2> 1} is bounded in probability, (3.32)
: Zn:(l i)kﬁ‘X' L) n2>1 is bounded in probabilit
7 \ & - in— i n2 is bounded in p y.
(3.33)
In every case, we have that
n 1/2
imsunligind) (i) (=00
= lim sup(liminf)———-k—— i(l - i)"“X., _ % (3.34)
n—oo  n=o0 ' \/2nloglogn \ L n ok
+
=(—) kO’k a.s.
nV2(T, — 0,) <L N(0, K202) (3.35)
k e 1 k=1 0 d 2 2 q
% (2(1 - 7—1) X“m - T —_— N(O,]\, Ty (-3-56)

where

0% = Var(Yx)
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~(1 =)k (U) + 9—}: - /01 (Itwgey — ) (1= K)(A —)*2F ()t

= /l (Itu<ey —t) (1 — t)*"1dF*(t)dt
0

Y

I

Remark If we replace

min{X;l yrees X,'k}

max{X;,,..., Xi. }-

Then, similarly we have that

K (n,k)

= (Z k= lX‘n‘*‘DlZ k- 2X'n+ +Dk—liXi:n>
(k) k_1 . i=1

where Dy, Dy, ..., Dy_, are constants depending on & only. Thus, we can state

_<7_1§ Z max{X;,, ..., X }

an analogue of Theorem 3.4 for U-statistic

1
Z max{Xi,, ..., Xi.}, n>k

(k) (n,k)

k n i k-1
ES () e nz
’IL -1 n

if we want. Thus, we can not only give an alternative proof of Theorem 1.1 of

and L-statistic

Jilat and Hill (1992), but also improve their result. For example, under the

assumption (3.24), we have that

RN
limsupﬁ 2(;) Xin| <00 as. (3.37)
1=

n—00
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if and only if

E (lmax{X}, ..., Xi}|) < o0. (3.38)

In either case, we have that

n

.k e
nll.rgxom;zk 'Xin = E(max{Xi, ..., Xx}) as. (3.39)

Example Let {X, Xn,n2 1} be a sequence of i.i.d. random variables with

common density function

. 5
f(z) = ml(:g-l}-

It is easy to check that
E(|X]) = oo.

Thus, Theorem 1.1 of Gilat and Hill (1992) can not be applied to

k n
lim —§ T X,
=1

n—oo Nk
However, note that 3‘ > %,
E(1X**) <
and

E (Jjmax{Xy, ..., Xk|) <oo, forallk>2.

So (3.37), (3.38) and (3.39) imply that, for every k > 2,

n

.k .
nll.n;o;; * X = E(max{X,, .., Xi})
i=1
-1
Skx

= [w {;(_l.)(s;;/s)mdiB

— 5k -

= et
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4 The Law of the Logarithm for L-Statistics

Let {X, Xn; n > 1} be a sequence of i.i.d. random variables with
E(X)=0 and E(X%) =1 (4.1)

and let J(-) be a Lipschitz function of order 1 defined on [0, 1]. LIL for weighted
sums of form 3_i_, J(-:';)X.‘, n > 1 established by Tomkins (1975, 1976) implies

that
1/2

. 21}—1 J(i)Xi ! 2
limsup S—=2= = t . 4.2
T::;p 2nloglogn ‘/ol J()d as (4.2)

By comparing (4.2) with (2.7), we can find that both (4.2) and (2.7) have the

same framework except for two differences. One of them is, usually,

/l J?(t)dt # Var(Y)
0

where Y is defined as in (2.2). On the other hand, Li, Rao and Wang (1995)
show that, for almost all chices {¢;»; 1 < i < n, n > 1} of triangular arrays of
real numbers with

sup  |¢inl| < o0,
1<i<n,n>1

the weighted sums
n
Zci',,X.-, n2>1
=1

obey the Law of the Logarithm, i.e.,

IZ{:l Ci|71X" < 00 (43)

0 < limsup a.s.

" =00 vanlogn

27




It follows that

n
v X
limsupl—z—‘=—1M=oo as.

n—oo V2nloglogn

In this section, we give a version of (4.3) for L-statistics with no proof. See Li,
Rao and Tomkins (1993) for the details of its prrof. Before we state our result,
we introduce some more notation. Let Z = {(i,n); 1 <i<n, n>1}. Fora
given probability measure v on the Borel o-algebra of R, let S = S(v denote
the support of v. We will consider only those probability measures for which
S is bounded. Let P’ = v? be the product probability measure on the Borel
o-algebra of ST.

THeorem 3.1 (A Law of the Logarithm for L-Statistics) Let {X, Xn; n >
1} be a sequence of i.i.d. random variables and H(-) a real valued measureable

function defined on R such that
E (H*(X)) < co.

Then, for any given probability measure v on the Borel o-algebra of R with

bounded support S = S(v), there exists a set Q5 C ST such that
P'(Q) =1 (4.4)

and for any {ci.; (i,n) € I} € Qo,

n

e ) — +
limsup(liminf) Loizt Cinfl(Xin) — npt =(-)o
n—oo NTO0 V2nlogn

where

p= E(II(X))/

S

w(dt) o= E(H*X)) (/S(t —/ssu(ds))2u(dt)) .
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Remark If E(H(X)) =0 and 0 < E(H%(X)) < oo, then for almost all
choices {ci»; (i,n) € I} of triangular arrays of real numbers with sup(; ez |€in] <

M < oo for some constant M > 0, the L-statistics
n
D cinH(Xin), n21

obey the Law of the Logarithm, i.e.,

0 < limsup | E 16, nH (Xin)|

n—o00 iV E’Il [Ogﬂ

< o0 as.

It follows that

limsup |2 i Cim H(Xin)| =00 as.
n—0o \/Zn log logn

Thus, for almost all choices {c; »; (¢,1) € I} of triangular arrays of real numbers

with sup(; )7 [cin| £ M < oo, the LIL for L-statistics

n

Zci,nH(X.-,n), n>1

i=1

fails.

NOTE
Some of the results of this paper were taken from the technical report of Li, Rao

and Tomkins (1993).
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